3.5.3 \(\int (a+c x^2+b x^4)^p \, dx\) [403]

Optimal. Leaf size=133 \[ x \left (1+\frac {2 b x^2}{c-\sqrt {-4 a b+c^2}}\right )^{-p} \left (1+\frac {2 b x^2}{c+\sqrt {-4 a b+c^2}}\right )^{-p} \left (a+c x^2+b x^4\right )^p F_1\left (\frac {1}{2};-p,-p;\frac {3}{2};-\frac {2 b x^2}{c-\sqrt {-4 a b+c^2}},-\frac {2 b x^2}{c+\sqrt {-4 a b+c^2}}\right ) \]

[Out]

x*(b*x^4+c*x^2+a)^p*AppellF1(1/2,-p,-p,3/2,-2*b*x^2/(c-(-4*a*b+c^2)^(1/2)),-2*b*x^2/(c+(-4*a*b+c^2)^(1/2)))/((
1+2*b*x^2/(c-(-4*a*b+c^2)^(1/2)))^p)/((1+2*b*x^2/(c+(-4*a*b+c^2)^(1/2)))^p)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 133, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {1119, 440} \begin {gather*} x \left (\frac {2 b x^2}{c-\sqrt {c^2-4 a b}}+1\right )^{-p} \left (\frac {2 b x^2}{\sqrt {c^2-4 a b}+c}+1\right )^{-p} \left (a+b x^4+c x^2\right )^p F_1\left (\frac {1}{2};-p,-p;\frac {3}{2};-\frac {2 b x^2}{c-\sqrt {c^2-4 a b}},-\frac {2 b x^2}{c+\sqrt {c^2-4 a b}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + c*x^2 + b*x^4)^p,x]

[Out]

(x*(a + c*x^2 + b*x^4)^p*AppellF1[1/2, -p, -p, 3/2, (-2*b*x^2)/(c - Sqrt[-4*a*b + c^2]), (-2*b*x^2)/(c + Sqrt[
-4*a*b + c^2])])/((1 + (2*b*x^2)/(c - Sqrt[-4*a*b + c^2]))^p*(1 + (2*b*x^2)/(c + Sqrt[-4*a*b + c^2]))^p)

Rule 440

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1119

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[a^IntPart[p]*(
(a + b*x^2 + c*x^4)^FracPart[p]/((1 + 2*c*(x^2/(b + q)))^FracPart[p]*(1 + 2*c*(x^2/(b - q)))^FracPart[p])), In
t[(1 + 2*c*(x^2/(b + q)))^p*(1 + 2*c*(x^2/(b - q)))^p, x], x]] /; FreeQ[{a, b, c, p}, x] && NeQ[b^2 - 4*a*c, 0
]

Rubi steps

\begin {align*} \int \left (a+c x^2+b x^4\right )^p \, dx &=\left (\left (1+\frac {2 b x^2}{c-\sqrt {-4 a b+c^2}}\right )^{-p} \left (1+\frac {2 b x^2}{c+\sqrt {-4 a b+c^2}}\right )^{-p} \left (a+c x^2+b x^4\right )^p\right ) \int \left (1+\frac {2 b x^2}{c-\sqrt {-4 a b+c^2}}\right )^p \left (1+\frac {2 b x^2}{c+\sqrt {-4 a b+c^2}}\right )^p \, dx\\ &=x \left (1+\frac {2 b x^2}{c-\sqrt {-4 a b+c^2}}\right )^{-p} \left (1+\frac {2 b x^2}{c+\sqrt {-4 a b+c^2}}\right )^{-p} \left (a+c x^2+b x^4\right )^p F_1\left (\frac {1}{2};-p,-p;\frac {3}{2};-\frac {2 b x^2}{c-\sqrt {-4 a b+c^2}},-\frac {2 b x^2}{c+\sqrt {-4 a b+c^2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.10, size = 161, normalized size = 1.21 \begin {gather*} x \left (\frac {c-\sqrt {-4 a b+c^2}+2 b x^2}{c-\sqrt {-4 a b+c^2}}\right )^{-p} \left (\frac {c+\sqrt {-4 a b+c^2}+2 b x^2}{c+\sqrt {-4 a b+c^2}}\right )^{-p} \left (a+c x^2+b x^4\right )^p F_1\left (\frac {1}{2};-p,-p;\frac {3}{2};-\frac {2 b x^2}{c+\sqrt {-4 a b+c^2}},\frac {2 b x^2}{-c+\sqrt {-4 a b+c^2}}\right ) \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + c*x^2 + b*x^4)^p,x]

[Out]

(x*(a + c*x^2 + b*x^4)^p*AppellF1[1/2, -p, -p, 3/2, (-2*b*x^2)/(c + Sqrt[-4*a*b + c^2]), (2*b*x^2)/(-c + Sqrt[
-4*a*b + c^2])])/(((c - Sqrt[-4*a*b + c^2] + 2*b*x^2)/(c - Sqrt[-4*a*b + c^2]))^p*((c + Sqrt[-4*a*b + c^2] + 2
*b*x^2)/(c + Sqrt[-4*a*b + c^2]))^p)

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int \left (b \,x^{4}+c \,x^{2}+a \right )^{p}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^4+c*x^2+a)^p,x)

[Out]

int((b*x^4+c*x^2+a)^p,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+c*x^2+a)^p,x, algorithm="maxima")

[Out]

integrate((b*x^4 + c*x^2 + a)^p, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+c*x^2+a)^p,x, algorithm="fricas")

[Out]

integral((b*x^4 + c*x^2 + a)^p, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b x^{4} + c x^{2}\right )^{p}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**4+c*x**2+a)**p,x)

[Out]

Integral((a + b*x**4 + c*x**2)**p, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+c*x^2+a)^p,x, algorithm="giac")

[Out]

integrate((b*x^4 + c*x^2 + a)^p, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (b\,x^4+c\,x^2+a\right )}^p \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^4 + c*x^2)^p,x)

[Out]

int((a + b*x^4 + c*x^2)^p, x)

________________________________________________________________________________________